
Acta Technica 62 (2017), No. 6B, 131–142 c© 2017 Institute of Thermomechanics CAS, v.v.i.

Local parallel mutation irregular code

generation of data flow driven

Guofang Li1, Ning Lu2

Abstract. In order to improve parallel computational efficiency and accuracy of large matrix
multiplication, a kind of Epiphany-OpenCL parallel computational mode of large matrix multipli-
cation has been proposed based on DCT predictive coding, which has been proposed in this paper.
DCT transformed value of two-dimensional data and its inverse transformation has been used to
realize the dimensionality reduction of matrix data, at the same time, OpenCL parallel transform
coding process has been designed based on Epiphany to realize parallel processing of matrix multi-
plication. Experimental results have verified effectiveness of the proposed mode. In realization of
the said algorithm, Zynq series chips of Xilinx have been used for verification.

Key words. Predictive coding, Epiphany architecture, Parallel computation of matrix, Local
code, Inordinance.

1. Introduction

Epiphany connects different computational kernels with two-dimensional mesh
network structure so that data [1-3] is exchanged between different kernels through
two-dimensional mesh network. Two types of products including 16 kernels and 64
kernels have been developed in this platform, which can be expanded [4] through in-
terconnection between boards. Performance of an Epiphany IV processor is 50GFL-
OPS/W, which is the most efficient one in parallel processors based on multi-purpose
kernel. This architecture can be expanded to 4096 kernels (exascale computing level
has been reached). Energy efficiency of Epiphany architecture has been certified as
the guidance and future direction [5] of this kind of platform. Future processors will
have hundreds of on-chip kernels, which is exactly consistent with Epiphany architec-
ture characteristics. However, unlike the general-purpose processor, this processor
has not been provided with cache since it is limited to the area and resources on

1Department of public infrastructure , Guangzhou Health Science College, Guangzhou, 510450
China

2Computer Engineering technical College, Guangdong Polytechnic of Science and Technology,
Zhuhai, 510450 China

http://journal.it.cas.cz



132 GUOFANG LI, NING LU

chip and the programming model is different from [6] the general programming way,
too. Although Epiphany processor has higher energy efficiency and computational
capacity, programmers still need to optimize the program with pertinence for giv-
ing full play to computational capacity. This paper has selected the representative
matrix multiplication algorithm to research programming optimization of Epiphany
processor. Matrix multiplication is widely used in the field of scientific computa-
tion, which has higher requirements for floating-point performance and is able to
evaluate computational efficiency [7] of processor well. This paper has optimized
data portioning, data communication between kernels and other relevant aspects
aiming at Epiphany architecture characteristics. Epiphany supports a variety of
programming models such as standard C, OpenCL, OpenMP and MPI. Aiming at
protogenetic C language programming and relying on eSDK provided byAdapteva,
this programming mode is able to give good play to Epiphany performance and
support various programming. Although this programming mode is limited in used
of Epiphany hardware, OpenCL, OpenMP and MPI program can be run between
different computing platforms, which is very important[8∼9] in the field of hetero-
geneous computation [8∼9].

2. DCT predictive coding

2.1. Predictive coding technology

Predictive coding algorithm realizes elimination of adjacent data correlation in
the space domain and time domain to obtain excellent data compression effect
[10∼11] in the way of prediction to data without coding, as shown in Fig. 1. Firstly,
x (n) is set as the current input data to realize the prediction to x (n) value through
adjacent coding data and the predictive value is p (n); secondly, entropy coding
quantization shall be implemented to deviation e (n) between predicted value p (n)
and true value x (n); finally reconstruction value x (n) can be obtained based on
quantization of residual e′ (n) and predicted value p (n), which can be expressed as
x′ (n) and act as the hypothetical value of data without coding.

 

   
Fig. 1. Basic process of predictive coding

There are mainly two kinds of predictive coding: (1) prediction in data, mainly
for redundancy elimination of spatial domain; (2) prediction between data, mainly



LOCAL PARALLEL MUTATION IRREGULAR CODE GENERATION 133

for redundancy elimination of time domain. However, data compression can be
realized only based on prediction technology if limit elimination of time redundancy
is used in data.

2.2. Discrete cosine coding

According to Discrete Fourier Transform (DFT), it can be known that any data
signal can be expressed as superposition of multiple sine and cosine data with differ-
ent frequencies and amplitudes. If input data is discrete and consistent with cosine
form, then decomposition of data signal is discrete cosine process (Discrete Cosine
Transform, DCT). In the field of mathematical research, there are many different
types of DCT, but all of them belong to the field of real even DFT. Research contents
in this paper mainly involves relevant coding problems and DCT used hereof is the
DCT transform process of II type for simplifying expression of the problem. Compu-
tational formula [12∼13] one-dimensional DCT transform process used in this paper
is shown as follows:

X(k) =

√
2

N
εk

N−1∑
n=0

x(n) cos

[
2N − 1k(2n+ 1)π

2N

]
. (1)

In the formula (1), k = 0, 1, · · · , N − 1; when k = 0 or k = N , value of εk
is 1

/√
2, otherwise its value is 1; N is data quantity in data sequence and value

range of k and n is [0, N − 1]; X(n) is as a one-dimensional data in data sequence.
According to above formula, it can be seen that if k = 0, then it will be expressed
as the direct current signal component (Direct Current, DC) and in this case, X(0)
is in direct proportion to signal X(n) mean; if k > 0, then it will be expressed as
the alternating current signal component (Alternate Current, AC) and in this case,
the overall change trend of AC will speed up with growth of k in the sensitiveness of
X(k) on frequency of X(n), which will lead higher growth trend of frequency value.
The detailed computational demonstration is shown as:{

x(m) : 56, 38,−25,−15, 11,−67, 14, 39 ,
y(n) : 51, 53, 50, 49, 48, 52, 47, 50 .

Based on y(n) and x(m) with different characteristics as mentioned above and
use of DCT transform, DCT transform characteristics as presented shall be analyzed
and researched, with specific process as shown as:

It is assumed that the one-dimensional sequence x(n) consist of 8 sets of data,
namely: 56, 38, -25, -67, -26, 14, 39. If k = 0, then value of X(0) can be computed
according to formula (2).

X(0) =
1

2
√
2
(56 + 38− 25 + 11− 67− 26 + 14 + 39) ≈ 15 . (2)



134 GUOFANG LI, NING LU

If k = 1, the following can be obtained according to formula (2):

X(1) =
1

2
(56 cos

π

16
+ 38 cos

3π

16
− 25 cos

5π

16
+ 11 cos

7π

16

+ 67 cos
7π

16
+ 26 cos

5π

16
− 14 cos

3π

16
− 39 cos

π

16
) ≈ 23 .

(3)

All the data DCT values in the data sequence can be obtained further according
to the above process. DCT transform result can be obtained with comparison to se-
quential data with large interval. It can be seen that data sequence with wider range
of distribution has a weak correlation while data sequence with adjacent distribution
has a strong correlation. Therefore, DCT transform value will cause the energy of
the data sequence to be concentrated in the DC coefficient when k = 0. When k > 0,
AC coefficient has small amplitude. This mode realizing signal concentration is able
to facilitate data entropy encoding and quantization to realize the optimization of
data signal. Two-dimensional expression of the transform process of matrix DCT is
shown in formula (4).

X(k, 1) = C(k)C(1)

N−1∑
m=0

N−1∑
n=0

x(m,n) cos

[
(2m+ 1)kπ

2N

]
cos

[
(2n+ 1)lπ

2N

]
. (4)

And then two-dimensional inverse transformation is shown in formula (5).

x(m,n) =

N−1∑
k=0

N−1∑
l=0

C(k)C(l)x(k, l) cos

[
(2m+ 1)kπ

2N

]
cos

[
(2n+ 1)lπ

2N

]
. (5)

In the formula, when values of parameters k, l are 0, values of coefficients C(k)
and C(l) are

√
1/N and the values in other cases are selected as

√
2/N ; value range

of parameters m,n, k, l can be expressed as [0, 1, 2, 3, · · · · · · , N − 1].

3. OpenCL parallel transform coding process based on
Epiphany

3.1. Programming model and architecture

Schematic diagram [14∼15] of Epiphany architecture system used in this paper
is shown in Fig. 2. The architecture form used hereof is distributed and scalable
memory and share computer system, which is composed of two-dimensional node
array in the form of processor and in which a low-delay eMesh can be used to
connect on-chip network data connection between processors. Every processor in this
architecture can be deemed as instruction set CPU and the superscalar floating-point
is able to process 64 bits memory access processes and two floating-point operation
processes in every clock period. On every group of routers of eMesh, three channels
can be opened for data communication: channel written off ship, channel written
on ship and reading channel. It can support the data communication between the



LOCAL PARALLEL MUTATION IRREGULAR CODE GENERATION 135

kernels so that the communication delay is usually nanosecond.
In Epiphany architecture, the processor generally consists of two layers of memo-

rizer: (1) off-chip memory is located within shared space of outer layer of processor,
at size less than 1GB; (2) local memory is located within the inner layer of the
processor, with computational nodes at size of 32KB. It shall be recognized that all
the computational nodes in architecture can use network on two-dimensional chip to
access the router of adjacent computational nodes within local memory space. Since
size of local processing memory is only 32KB, which has higher restriction on data
communication and task partition.

In order to make full use of processing capacity of computational node, off-chip
memory is needed to be made full use to expand computational space and data
size of off-chip memory access shall be reduced as far as possible at the same time.
Since processing node of Epiphany architecture used is not provided with mainframe
processing function, it can be used as coordinating processor in the process of data
processing.

 

   Fig. 2. Epiphany computational architecture

3.2. OpenCL parallel computation of matrix multiplication

It is assumed that n-dimensional vector x = [x1, x2, · · · , xn]T and n- order vector
matrix is A and parallel computation is implemented to product of matrix A and
vector x to acquire y = [y1, y2, · · · , yn]T . OpenCL model shall be used for paral-
lel multiplication computation of matrix herein. Partition shall be implemented to
matrix based on one-dimensional partition and the full column (full row) of matrix
group can be acquired in this way. Then a processor shall be used to be responsible
for processing and memory of a group. The said block parted can be in isometric
or continuous forms to represent two kinds of block partition forms including con-
tinuous band or cyclic band. In this research, continuous block partition has been
implemented to matrix A in the way of column partition to obtain n data blocks,
then the number of row of every data block can be deduced to be n/p. At the
same time, every row block has been parted into p sub-blocks correspondingly, then



136 GUOFANG LI, NING LU

[Ak,0Ak,1 · · ·Ak,p−1] can be acquired after matrix partition implemented to Ak, the
row block k of matrixA. Thus, expression of the above block Ak,j is shown as follows:

Ak,j =


Akn/p+1,jn/p+1 Akn/p+1,jn/p+2 · · · Akn/p+1,jn/p+n/p

Akn/p+2,jn/p+1 Akn/p+2,jn/p+2 · · · Akn/p+2,jn/p+n/p

...
...

. . .
...

Akn/p+n/p,jn/p+1 Akn/p+n/p,jn/p+2 · · · Akn/p+n/p,jn/p+n/p

 . (6)

In formula (6), continuous row partition has been implemented to matrix A based
on the subscript while corresponding processor quantity has been used for column
partition to subscript j of matrix A, of which the greatest characteristic is to be
related to processor quantity p and the partitioning range is [0, 1, · · · , p−1]. Matrix
A is the n-order matrix and its sub-block has n/p orders after partitioning. Similarly,
n-order sub-block partition has been implemented to subsequent product vector x
and the result vector y in the form of row partitioning. Then the results are shown
as follows: {

x = [x0, x1, · · · , xp−1]T ,

y = [y0, y1, · · · , yp−1]T ,
(7)

Its corresponding sub-block k is expressed as:{
xk = [xkn/p+1, xkn/p+2, · · · , xkn/p+n/p]

T

yk = [ykn/p+1, ykn/p+2, · · · , ykn/p+n/p]
T (8)

After sub-block partition based on the processor quantity, it can be deduced that
specific computation of product yk resulted from matrix partition on processor k
can be expressed as:

yk = Akx =

p−1∑
j=0

(Akjxj) =

p−l∑
j=0

(Ak,(k+1) mod pXj(k+j) mod p) . (9)

Computational results of subscript module (k + j) mod xk of matrix in moving
processing of matrix column subscript j according to [0, 1, · · · , p − 1] are [k, k +
1, · · · , k − 1]. In the processing, computation shall be implemented first to sub-
block Ak,kxk

located at local computational processor which shall be followed by
Ak,(k+1)xk+1

, · · · in turn. In this way, circulatory movement can be realized to matrix
block computation until circulatory computation of the whole block matrix ends, in
which traversal implementation has been realized to all the sub-blocks of matrix x.

If row coordinate corresponding to sub-block to be processed in the matrix A is
always k and keep constant, sub-block used in matrix A will use the current processor
in running status for memory in the process of using the above formula. Subscript
of sub-block vector corresponding to vector x can be computed as (k + j) mod p,
of which value is related to change of j, namely, traversal processing is needed
for sub-block vector on vector x in the computational process. In the process of



LOCAL PARALLEL MUTATION IRREGULAR CODE GENERATION 137

implementation, vector x can be moved upward to realize circular implementation
in processing.

x0

x1

x2

x3

A0,0

A1,0

A2,0

A3,0

A0,1

A1,1

A2,1

A3,1

A0,2

A1,2

A2,2

A3,2

A0,3

A1,3

A2,3

A3,3

k=0

k=1

k=2

k=3

A
A0

A1

A2

A3

xProcessor 

 

   
Fig. 3. Parallel product of matrix vector

In the schematic process of parallel production computation of matrix vector as
shown in Fig.3, product operation shall be implemented to current memory sub-
block xk of vector x in processor and memory Ak of matrix A in the processor, for
p times in total. Every product operation of sub-vector in vector x shall use round-
robin mode toward the last step and accumulation of p times of processor product
operations to acquire the result vector y of the final vector matrix product.

3.3. OpenCL data transmission of matrix multiplication al-
gorithm

Main purpose of interface function API provided to parallel computation of ma-
trix in eSDK is to acquire transmission capacity of external data shared and memo-
rized on kernel and between kernels and use OpenCL supported by it to for hardware
implementation to scalable algorithm of parallel multiplication of matrix proposed
in Literature [10] so that characteristics of hardware Epiphany can be used fully.

 

   
Fig. 4. OpenCL data transmission process of matrix multiplication

Epiphany architecture processor used in this research includes 16 computational
nodes and uses the structural constitution as 4×4 which has been limited by on-chip
memory condition. Upper limited of block of cokernel in matrix is 32× 32 and then
Epiphany processor can upload the matrix at size of 128 × 128 in shared external



138 GUOFANG LI, NING LU

memory in each process of ordinal data transmission. Where data between kernels
is transferred on Epiphany architecture for three times, total times of performable
matrix multiplication computation is 128× 128.

4. Experiment and analysis

4.1. Experimental setup

Emphasis of this experiment is the hardware implementation of the targeted
processor aiming at matrix multiplication algorithm realized on the basis of OpenCL
as mentioned above and to obtain performance evaluation. Performance comparison
parameters of ARM A9 processor and the targeted processor parameters are shown
[16] in Table 1.

Table 1. Performance comparison parameter

Comparative parameter Epiphany ARM A9

Number of kernel (No.) 18 5

Clock frequency (MHz) 600 1200

Performance peak 19200 19200

Energy consumption (mW) 270 1350

Superficial area of chip (nm2) 2.05 4.6

MFLOPS(nm2) 9400 42000

 

 Fig. 5. Computational chip based on epiphany

Epiphany processor used has frequency of 600MHz, performance peak of 19200,
computational power consumption less than 270mW, computational ratio of energy
computation more than 71000 and used computational chip as shown in Fig. 5. This
kernel control chip is the Zynq series chip launched by Xilinx in April 2010.

4.2. Comparative evaluation of general programming model

Parallel matrix multiplication operation to be realized in this research on the
basis of OpenCL is established under Epiphany framework, of which performance
expression is shown with performance analysis data in Table 2.



LOCAL PARALLEL MUTATION IRREGULAR CODE GENERATION 139

Table 2. Algorithm performance analysis on epiphany

Matrix size ANSICC OpenMP Improved MPI MPI OpenCL

64 0.15ms 21367.0ms 528ms 15637ms 653ms
128 0.26ms 35945.0 ms 898ms 24539 ms 1200ms
256 13.92ms 155865 ms 3952ms 125865 ms 4120ms

According to performance analysis and evaluation data on Epiphany as shown
in Table 2, it can be seen that MPI programming mode is suitable for traditional
multiplication operation of matrix without block, where computational time does
not include times needed in initial operation to equipment and computing platform.
Basic frequency of used processor is 667MHz. It can be seen from Table 2 that in the
process of programming based on MPI programming mode, acquired computational
performance is not ideal and the computational time is more than that of serial mode
by above 2 time order of magnitudes. In order realize correspondence to ANSICC
programming mode, block computation shall be used. Memory of every processor
kernel on Epiphany architecture shall be defined in the form of private memory. Pro-
gramming model needs to select data block within shared external memory space
continuously to realize block computation to matrix multiplication operation. Com-
pared with ANSICC programming process, block computation operation with use
of OpenCL is much small than operations of ANSICC, MPI and other programming
modes, which can reduce sharply expenditure in off-chip data access and memory.
At the same time, DMAengine can be called to data transmission mode by using
OpenCL to enhance efficiency of data transmission. Therefore, higher performance
can be acquired by using OpenCL programming mode than those by using ANSICC,
MPI and other programming modes.

4.3. Experimental analysis of large matrix multiplication

This experiment has selected test object of matrix multiplication at size 512 ×
512, experimental mainframe of intel i7-6400HQ processor, experimental platform of
Epiphany single-kernel chip, serial computing mode to optimize the parallel program
on Epiphany chipset with 16 kernels. Comparison of computing time of desktop
computer, single-kernel chip and 16-kernel chip is shown in Table 3 and the mean of
10 times of experiments has been taken for comparative data in this experiment to
stabilize results in the computational process.

Table 3. Comparison of computing time of matrix multiplication

Evaluation index Desktop computer Single-kernel chip 16-kernel Epiphany chip

Total time 2451.3 532.8 354.9

Compared with the ordinary desktop mainframe, the biggest advantage of Epiph-
any parallel computational process is that it can obtain a lower balanced clock
frequency in the system while computational efficiency can be increased by 5 times.
In particular, computational efficiency with use of 16-kernel chip is higher, which



140 GUOFANG LI, NING LU

has reflected advantage in efficiency of Epiphany parallel computational process.
Time measuring results at different computational stages in Epiphany parallel

computational process with use of 16-kernel chip are shown with comparative data
in Table 4.

Table 4. Computational times of multi-kernel epiphany at different stages

Computational stage Computational time Percentage

Matrix multiplication of sub-block within kernel 18.3 11.9

Internal exchange of data 0.79 0.5

External DRAM read 134.6 87.6
Total time 153.7 100

According to computational time data of multi-kernel Epiphany at different
stages as shown in Table 4, it can be seen: (1) total computational time does not
equal to sum of times in various items and multi-kernel parallel computational per-
formance is low; (2) the effective computational time used in matrix multiplication
only accounts for about 10% of the total time and most of computational time is
spent in reading and writing DRAM data.

5. Conclusion

In this paper, Epiphany-OpenCL parallel computation of large matrix multipli-
cation based on DCT predictive coding has been realized according to the two kinds
of programming models. Experimental results indicate that the proposed algorithm
routine can acquire excellent performance while use of OpenCL routine can facil-
itate acquisition of better performance compared with uses of OpenMP, MPI and
other routines. Moreover, this solution will be more popular with constant perfec-
tion in support of various programming algorithm models by Epiphany. In future,
the popularization and application of this algorithm will be stressed.

References

[1] M.Ravishankar, J. Eisenlohr, L.N. Pouchet, et al.: Code generation for par-
allel execution of a class of irregular loops on distributed memory systems[C]// High
PERFORMANCE Computing, Networking, Storage and Analysis. IEEE, (2012), 1–11.

[2] C.Hu, J. Li, J.Wang, et al.: Communication Generation for Irregular Parallel
Applications[C]// International Symposium on Parallel Computing in Electrical En-
gineering, (2006). Par Elec. IEEE, 263–270.

[3] J. Lin, X.Tian, Ng J: Mis-speculation-Driven Compiler Framework for Aggressive
Loop Automatic Parallelization[C]// IEEE, International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum. IEEE Computer Society (2013),
1159–1168.

[4] M.Belaoucha, D.Barthou, A,̇Eliche, et al.: FADAlib: An open source C++
library for fuzzy Array dataflow analysis[J]. Procedia Computer Science, 1 (2010),
No. 1, 2075–2084.



LOCAL PARALLEL MUTATION IRREGULAR CODE GENERATION 141

[5] L.A. J.Marzulo, T.A.O.Alves, F.M.G. França, et al.: Couillard: Parallel
Programming via Coarse-Grained Data-Flow Compilation[J]. Parallel Computing, 40
(2011), No. 10, 661–680.

[6] D.B. Larkins: Improving data locality for irregular partitioned global address space
parallel programs[C]// Southeast Regional Conference. ACM, (2012), 280–285.

[7] F. Li, A. Pop, A.Cohen: Automatic Extraction of Coarse-Grained Data-Flow
Threads from Imperative Programs[J]. IEEE Micro, 32 (2012), No. 4, 190-31.

[8] S.Kim, H.Han: Efficient SIMD code generation for irregular kernels[J]. ACM SIG-
PLAN Notices, 47 (2012), No. 8, 55–64.

[9] D.Cho, S. Pasricha, I. Issenin, et al.: Compiler driven data layout optimization
for regular/irregular array access patterns[J]. Acm Sigplan Notices, 43 (2008), No. 7:
41–50.

[10] V. Subotic, J. C. Sancho, J. Labarta, et al.: Identifying Critical Code Sections in
Dataflow Programming Models[C]// Euromicro International Conference on Parallel,
Distributed and Network-Based Processing. IEEE, (2013), 29–37.

[11] A. Smyk, M.Tudruj: Hierarchical Optimization of the Parallel FDTD Computations
Based on the Macro Data Flow Graph Paradigm[C]// International Symposium on
Parallel and Distributed Computing. IEEE, (2007), 10–10.

[12] D.Burger, S.W.Keckler, K. S.Mckinley, et al. Scaling to the End of Silicon
with EDGE Architectures[J]. Computer, 37 (2004), No. 7, 44–55.

Received May 7, 2017



142 GUOFANG LI, NING LU


	 Guofang Li, Ning Lu : Local parallel mutation irregular code generation of data flow driven
	Introduction
	DCT predictive coding
	OpenCL parallel transform coding process based on Epiphany
	Experiment and analysis
	Conclusion


